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Abstract

Native American genetic variation remains underrepresented in most catalogs of human genome sequencing data. Previous
genotyping efforts have revealed that Mexico’s Indigenous population is highly differentiated and substructured, thus
potentially harboring higher proportions of private genetic variants of functional and biomedical relevance. Here we
have targeted the coding fraction of the genome and characterized its full site frequency spectrum by sequencing 76
exomes from five Indigenous populations across Mexico. Using diffusion approximations, we modeled the demographic
history of Indigenous populations from Mexico with northern and southern ethnic groups splitting 7.2 KYA and subse-
quently diverging locally 6.5 and 5.7 KYA, respectively. Selection scans for positive selection revealed BCL2L13 and KBTBD8
genes as potential candidates for adaptive evolution in Rar�amuris and Triquis, respectively. BCL2L13 is highly expressed in
skeletal muscle and could be related to physical endurance, a well-known phenotype of the northern Mexico Rar�amuri. The
KBTBD8 gene has been associated with idiopathic short stature and we found it to be highly differentiated in Triqui, a
southern Indigenous group from Oaxaca whose height is extremely low compared to other Native populations.
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Introduction
Comprehensive genome sequencing projects of human pop-
ulations have demonstrated that a vast majority of human
genetic variation has arisen in the past 10,000 years and is,
therefore, specific to the continental and subcontinental
regions in which they arose. As a result, the majority of rare
variation contributing to disease burden is expected to be
population specific and influenced by the local demographic
history and evolutionary processes of each population (Gravel
et al. 2011; Martin et al. 2017). Furthermore, it is recognized
that there is a strong bias toward the inclusion of individuals
of European descent in biomedical research, which is prob-
lematic for medical, scientific, and ethical reasons and should

be counter balanced by including underrepresented popula-
tions in large genomic surveys of genetic variation
(Bustamante et al. 2011; Popejoy and Fullerton 2016).

Despite recent large-scale sequencing projects like the
Exome Aggregation Consortium (ExAC) (Lek et al. 2016),
which considerably expanded the knowledge on the pat-
terns of protein-coding variation worldwide, little is known
about the distribution of population-specific genetic var-
iants that may underlie important evolutionary and bio-
medical traits of understudied groups. In particular,
populations in the Americas of Indigenous ancestry are
expected to show exacerbated genetic divergence due to
extreme isolation and serial founder effects during the
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continental peopling, leading to an increased fraction of
population-specific variation that remains to be character-
ized (The 1000 Genomes Project Consortium 2015; Martin
et al. 2017; Bergström et al. 2019). Present-day Mexico rep-
resents one of the largest reservoirs of Native American var-
iation. However, studies targeting such variation have used
either genotyping arrays with markers ascertained mainly in
non-native American populations (Silva-Zolezzi et al. 2009;
Moreno-Estrada et al. 2014) or with whole-genome sequenc-
ing on a small number (n¼ 2) of individuals per indigenous
population (Romero-Hidalgo et al. 2017). The former ap-
proach prevents the discovery of new variants, while the
latter does not allow reliable estimation of allele frequencies;
consequently, there is a need to harness high coverage se-
quencing with population-level sampling. This will shed light
on the consequences of functional variation in protein-
coding genes as well as the adaptive and demographic pro-
cesses that have shaped Native Mexican (NM) genomes.

To fulfill this need, we sequenced the exomes of 78 indi-
viduals from five different indigenous groups from Northern
(Rar�amuri [TAR] or Tarahumara, and Huichol [HUI]), Central
(Nahua [NAH]), South (Triqui [TRQ]), and Southeast (Maya
[MYA]) Mexico. We characterized the protein-coding genetic
variation from these populations to infer the broad demo-
graphic history of pre-Hispanic Mexico and to search for
signatures of adaptive evolution.

Results

Genetic Variation in 76 Native Mexican Exomes
According to previous genetic characterizations of indigenous
Mexican groups, Mexico’s Native American ancestry is sub-
structured into three major geographical components:
Northern, Central and Southern (Gorostiza et al. 2012;
Moreno-Estrada et al. 2014). In order to capture such sub-
structure, we obtained protein-coding genetic variation from
the sequences of 78 exomes from five NM populations rep-
resenting all three major genetic regions of Mexico: HUI
(n¼ 14), MYA (n¼ 13), NAH (n¼ 17), TAR (n¼ 19), and
TRQ (n¼ 15). Most exomes were sequenced at >70� (av-
erage depth 90.3�), except for six individuals with depths
between 31� and 35� (supplementary fig. S1,
Supplementary Material online). We found no correlation
between average depth and number of called heterozygous
sites (p¼ 0.13, P-value¼ 0.274), ruling out a potential bias of
the lower-depth sequences in downstream analyses (supple-
mentary fig. S2, Supplementary Material online). We used the
Genome Analysis Tool Kit (GATK) (McKenna et al. 2010) to
call variants jointly with an exome data set including 103 Han
Chinese (CHB) individuals from 1000 Genomes Project (TGP)
(The 1000 Genomes Project Consortium 2015). We jointly
called with CHB exome data as we used the variants in this
population for downstream analysis involving tests for selec-
tion in the NM groups. We identified 120,735 single-nucleo-
tide variants (SNV) and computed the genotype
concordance between these and previously generated data
from Affymetrix 6.0 (Moreno-Estrada et al. 2014) and Axiom
World IV (Galanter et al. 2014) SNP arrays available for the

NM individuals. Concordance was above 93% for all individ-
uals except for one TRQ and one HUI individual, which were
excluded from all downstream analyses (supplementary fig.
S3 and table S1, Supplementary Material online). A predom-
inance of Native American genetic ancestry in the remaining
76 NM individuals was corroborated with ADMIXTURE
(Alexander et al. 2009) and principal components analysis
(PCA) (Patterson et al. 2006) (supplementary table S2 and
fig. S4, Supplementary Material online). Fifty-nine individuals
displayed some non-Native ancestry ranging from 0.1% to
13%, and therefore we masked this fraction in the admixed
exomes (see Material and Methods) for downstream analyses
(supplementary tables S2 and S3, Supplementary Material
online).

After masking, a total of 58,918 biallelic SNV were retained
in the 76 NM exomes with a transition/transversion (Ti/Tv)
ratio of 3.025, in agreement with the value observed in
human-exome sequencing data (Bainbridge et al. 2011). Of
all sites, 62% fell within exonic regions and 31% in intronic,
while the remaining 6% consisted of UTR, ncRNA, intergenic,
splicing, upstream and downstream annotations (supple-
mentary table S4, Supplementary Material online). A subset
of 4,181 SNVs was absent from public data sets (ExAC, TGP,
and dbSNP v.142). The number of novel variant sites per
exome ranged between 29 and 118 (median 84). Most of
these novel SNVs are nonsynonymous (67.5%) and found at
low frequencies: approximately 80% are singletons, while the
rest are found at less than 5% frequency in the NM exomes
(supplementary figs. S5 and S6, Supplementary Material on-
line). The number of singletons per population was 5,262 for
the HUI (average per individual 405), 6,093 for the MYA
(average per individual 469), 8,108 for the NAH (average
per individual 476), 5,454 for the TAR (average per individual
287), and 5,166 for the TRQ (average per individual 369).

Population History of Native Mexicans
We used the site frequency spectrum (SFS) to infer the de-
mographic history of four NM populations: TAR, HUI, TRQ,
and MYA. The NAH population was excluded from this anal-
ysis due to genetic substructure found within this linguistic
group, which introduces noise in this type of analysis (see
Discussion). A total of 20,991 “neutral sites” (see Materials
and Methods for a description of filters used) were used as
input for demographic inference. We utilized a diffusion ap-
proximation approach implemented in the software dadi
(Gutenkunst et al. 2009) to infer the best-fit topology and
demographic parameters of the four populations (see
Materials and Methods). The best-fitting topology joins
Northern populations together (HUI and TAR), as well as
Southern populations (TRQ and MYA) stemming from a
shared branch (fig. 1) (supplementary table S5,
Supplementary Material online). The same topology is recov-
ered when inferring split patterns with the program TreeMix
(supplementary fig. S7, Supplementary Material online)
(Pickrell and Pritchard 2012).

For all models, we fixed a population bottleneck around 70
KYA, representing the Out of Africa bottleneck (Gutenkunst
et al. 2009). Our best-fit model inferred an ancestral effective
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population (Ne) of 12,000 individuals for all NM (95% CI:
11,438–12,570), which is reduced to a Ne of 2,457 individuals
(95% CI: 2,340–2,589) after the bottleneck. We inferred that
the split between northern (TAR and HUI) and southern
(TRQ and MYA) NM populations occurred 7,219 years ago
(95% CI: 6,454–7,857) (fig. 1, supplementary table S5,
Supplementary Material online). We find the two subsequent
splits occurring within 1,500 years of each other: TAR and HUI
diverged from each other 6,523 years ago (95% CI: 5,669–
7,249), followed by the TRQ and MYA split 5,715 years ago
(95% CI: 4,829–6,501) (fig. 1, supplementary table S5,
Supplementary Material online). We estimated all four pop-
ulations to have similarly small Ne. The MYA has the largest
Ne (2,750, 95% CI: 2,310–3,256), followed by the TAR (2,419,
95% CI: 2,117–2,729), TRQ (2,407, 95% CI: 2,050–2,759), and
HUI (2,193, 95% CI: 1,865–2,493) (fig. 1, supplementary table
S5, Supplementary Material online). A total of 95% confi-
dence intervals for these parameters were determined with
1000 bootstrapped replicates (supplementary table S6,
Supplementary Material online). We note that this model
assumes a constant population size since the last split. We
were not able to estimate population growth rates due to the
small sample size.

Adaptive Evolution in Native Mexicans
For inferring adaptive evolution, we calculated the Population
Branch Statistic (PBS) for each gene as in Yi et al. (2010). This
Fst-based statistic allows the identification of genes with
strong differentiation between a test population and a closely
related one since their divergence; using a third more dis-
tantly related population to detect changes affecting the
test population. To this end, we considered the variant sites
in the CHB and NM exomes that remained after masking
non-Native American ancestry in NM, and oriented these
to the ancestral/derived state, which reduced the number
of sites to 117,644 (i.e., it was not possible to infer the ances-
tral state for 3,091 sites). We refer to this analysis as “Ancestry-
Specific PBS.” We estimated a per-gene PBS in NM

considering the CHB data used for joint variant calling (see
Materials and Methods) as well exome data available as part
of the TGP for individuals of European ancestry (CEU), as the
second and third populations, respectively. This allowed the
detection of genes likely under selection in all NM since di-
vergence from the CHB.

We defined the genes in the 99.9th percentile of the em-
pirical distribution of the PBS values as being candidates of
adaptive evolution (fig. 2 and supplementary table S7,
Supplementary Material online). Because PBS distribution is
different for different gene sizes (i.e., for different numbers of
SNPs per gene), we selected this stringent filter and demon-
strate that with it, only the genes at the top of their size
distribution are retained (fig. 2b). Interestingly, some of these
genes had previously been identified as targets of selection in
other populations. These genes include SLC24A5, involved in
skin pigmentation, and FAP, which was previously suggested
to be under adaptive archaic introgression in Peruvians
(Racimo et al. 2016) and Melanesians (Vernot et al. 2016).
Of interest, three genes were involved in immune response.
These include SYT5, implicated in innate immune response,
and interleukins IL17A and IL13. The remaining candidate
genes were involved in signal transduction (MPZL1), protein
localization and transport (GRASP and ARFRP1), cell differen-
tiation and spermatogenesis (GMCL), Golgi apparatus orga-
nization (UBXN2B), neuron differentiation (MANF), signaling
and cardiac muscle contraction (ADRBK1), cell cycle (CDK5),
microtubule organization and stabilization (NCKAP5L), and
stress fiber formation (NCKIPSD); supplementary table S7,
Supplementary Material online).

Population-Specific Adaptive Evolution within
Mexico
To investigate genes under selection specific to each of the
four NM populations for which we had a demographic model
(HUI, MYA, TAR, and TRQ), we calculated PBS using the Han
Chinese (CHB) as the third population in the form of NM1,
NM2, and CHB for all 12 combinations. To evaluate the
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FIG. 1. Sampling locations and inferred demographic model for NM populations. Inferred split times are shown on the demographic model and
effective population sizes (Ne) are shown on the map. Each branch represents one of the populations used in the demographic inference; colors
correspond to those shown in the map displaying the sampling locations of the participant NM. The Nahua were not included in the demographic
inference (see Discussion).
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significance of these PBS values, we compared the observed
data to PBS values obtained from simulations under the in-
ferred demographic model (see Materials and Methods). We
were thus able to assign P values to each gene and rank them
by significance.

Only two genes with extreme PBS values passed a signif-
icance threshold of P< 10�5 (fig. 3a–c). These were identified
in HUI and were involved in cellular proliferation and differ-
entiation (KCNC2) and transcriptional repression of herpes-
virus promoters (ZNF426). To identify additional genes in the
remaining populations, we looked for genes in the top 1% of
the PBS distribution and in the lowest 1% of the P-value
distribution that were shared by at least two of the three
possible pairwise comparisons between populations. This
yielded eight additional candidate genes for adaptive evolu-
tion specific to different NM populations (supplementary
table S8, Supplementary Material online).

Among these new candidate genes for adaptive evolution,
we noticed gene BCL2L13 (BCL2 like 13), in the TAR, who are
known for their cultural practice of high-endurance long-dis-
tance running (Balke and Snow 1965). BCL2L13 encodes for a
pro-apoptotic protein that localizes in the mitochondria, is
highly expressed in skeletal muscle (GTex Version 7, supple-
mentary fig. S8, Supplementary Material online), and found in
a locus previously associated to osteoarthritis (OA) risk in
Mexican Americans (Coan et al. 2013). In addition, in TRQ
we identified KBTBD8 (Kelch Repeat and BTB Domain
Containing 8), a gene involved in ubiquitination and found
in a locus previously associated to idiopathic short stature in
Koreans (Kim et al. 2010). This is relevant because the TRQ
(from the southern state of Oaxaca) display a particularly
short stature (Faulhaber 2014) and the SNV driving the se-
lection signal (rs13096789) causes a nonsynonymous change

classified as “possibly damaging” by PolyPhen. Lastly, we
found gene HSD17B11 (Hydroxysteroid 17-beta dehydroge-
nase 11) as an additional candidate of adaptive evolution in
HUI. HSD17B11is a short-chain alcohol dehydrogenase that
metabolizes secondary alcohols and ketones, and it has been
suggested to participate in androgen metabolism during
steroidogenesis.

To evaluate if genes showing extreme PBS values were
enriched in any functional category or metabolic pathway,
we took the intersection of the genes with a P-value< 0.05 in
all three pairwise comparisons for each NM population (see
Materials and Methods). This way we compiled a list of 203
genes for HUI, 211 for MYA, 165 for TAR, and 183 for TRQ
(supplementary tables S9–S12, Supplementary Material on-
line). We evaluated functional enrichment for the three Gene
Ontology (GO) project categories: biological processes, cellu-
lar components, and molecular function (Ashburner et al.
2000; The Gene Ontology Consortium 2017), as well as path-
way over-representation using the IMPaLa tool (Kamburov
et al. 2011). We observed a functional enrichment with a
significance of P< 0.05 in HUI involving lipid intestinal ab-
sorption (GO: 1904729, GO: 0030300, GO: 1904478) (supple-
mentary fig. S9 and table S13, Supplementary Material
online). Consistently, the IMPaLa pathway over-
representation analysis revealed an enrichment of genes in-
volved in lipid metabolism and transport, specifically the
Statin pathway, for the same population (pathway source:
Wikipathways, P-value [8.32e-06], Q-value 0.0382).

Discussion
We carried out the most comprehensive characterization of
potentially adaptive functional variation in Indigenous
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peoples from the Americas to date. We identified in these
populations over 4,000 new variants, most of them singletons,
with neutral, regulatory, as well as protein-truncating and
missense annotations. The average number of singletons
per individual was higher in NAH and MYA, which is
expected given these two Indigenous groups embody the
descendants of the largest civilizations in Mesoamerica, and
that today NAH and MYA languages are the most spoken
Indigenous languages in Mexico (INEGI 2015). Furthermore,
the generated data also allowed us to propose a demographic
model inferred from genomic data in Native Mexicans and to
identify possible events of adaptive evolution in pre-
Columbian Mexico.

Demography
We propose, to our knowledge, the first demographic model
that uses genetic data to estimate split times between

ancestral populations within Mexico. By using the SFS of pu-
tatively neutral SNVs using a diffusion approximation ap-
proach, we inferred a split between northern and southern
NM at approximately 6.5–7.9 KYA, followed by regional dif-
ferentiation in the north at 5.7–7.2 KYA, and 4.8–6.5 KYA in
the south of Mexico (95% bootstrap CI, supplementary table
S5, Supplementary Material online). We note that the confi-
dence intervals for the TAR/HUI split and the TRQ/MYA split
are overlapping, and the second best fit-model infers these
splits to occur at the same time (supplementary table S6,
Supplementary Material online). This northern/southern split
and a northwest to southeast cline is consistent with previous
reports based on whole-genome and microarray genotype
data from NM (Moreno-Estrada et al. 2014; Romero-
Hidalgo et al. 2017). Furthermore, these split times are also
coherent with previous estimates of ancestral Native
Americans diverging �17.5–14.6 KYA into Southern Native
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Americans or “Ancestral A” (AncA, comprising Central and
Southern Native Americans) and Northern Native Americans
or “Ancestral B” (AncB) (Reich et al. 2012; Rasmussen et al.
2014; Raghavan et al. 2015; Moreno-Mayar et al. 2018; Scheib
et al. 2018), and with an initial settlement of Mexico occurring
at least 12,000 years ago, as suggested by the earliest skeletal
remains dated to approximately this age found in Central
Mexico (Gonzalez et al. 2003) and the Yucat�an peninsula
(Chatters et al. 2014). Studies on genome-wide data from
ancient remains from Central and South America reveal ge-
netic continuity between ancient and modern populations in
some parts of the Americas over the last 8,500 years
(Raghavan et al. 2015; Posth et al. 2018), though two ancient
genomes from Belize (dated to 7,740 BP and 9,300 BP, respec-
tively) do not show specific allele sharing with present-day
populations from that geographic area, instead they display
similar affinities to different present-day populations from
Central and South American populations, respectively
(Posth et al. 2018). This suggests that, by that time, the an-
cestral population of MYA was not yet genetically differenti-
ated from others, so our estimates of northern/southern split
at 7.2 KYA and MYA/TRQ divergence at 5.7 KYA fit with this
scenario.

Our SFS-based demographic insights are further supported
with D-statistics (Patterson et al. 2012), which in the forms D
(Anzick1, Athabascan, NM, YRI), reveal that all NM are indeed
closer to the AncA branch, represented by the �12.8k years
old Anzick1 individual from Montana (Rasmussen et al.
2014), than to two present-day Athabascans from British
Columbia, who are representatives of branch AncB
(Raghavan et al. 2014) (supplementary fig. S10,
Supplementary Material online). Although all comparisons
reveal this trend, it is important to acknowledge that the tests
were not significant, most likely due to the limited number of
sites, derived from only considering exomic regions, available
to calculate these D-statistics. Furthermore, tests in the forms
D (NM1, NM2, Anzick1, YRI) revealed that all NM populations
are equally related to Anzick1. Interestingly, tests in the form
D (NM1, NM2, Athabascan, YRI) reveal that MYA, TRQ, and
NAH are closer to Athabascans when using HUI and TAR
as the second NM population; however the test is only
significant when using HUI (supplementary fig. S10,
Supplementary Material online). This pattern could be
explained by gene flow from an unsampled Native
American population diverging before the AncA and
AncB split into the Northern Mexican populations after
they split from the Southern Mexican ones. A similar
model has been proposed by Moreno-Mayar and col-
leagues, who observe the contribution of an unsampled
population “Unsampled population A” (UPopA) to the
NM Mixe (Moreno-Mayar et al. 2018). Another possibility
is the contribution of an Athabascan-like population into
the ancestors of the Central/Southern Mexican popula-
tions, which could bring MYA, TRQ, and NAH closer to
Athabascans. Despite these interesting observations, we
caution that exome data are not ideal for demographic
inference at the level of resolution required to test these
or other more complex scenarios. The availability of

whole-genome data from additional ancient and
present-day populations is necessary to untangle their
deep population history.

Altogether these observations based on archeological and
paleogenomic data are consistent with our time estimates of
population splits within Mexico, which involve a divergence
of the Northern and Southern NM occurring at least two
thousand years after the settlement, and a divergence time
within these branches occurring approximately between 600
and 2,000 years later, respectively.

Regarding effective population sizes (Ne), we inferred an
ancestral Ne of 2,457 for all NM, which is in line with a recent
Ne estimate of 2,000 based on Markovian coalescent analyses
of whole-genome data from 12 NM (Romero-Hidalgo et al.
2017) as well as from Native ancestry segments in admixed
Mexicans (Schiffels and Durbin 2014). Both studies show a
low Ne around 2,000 sustained for the last 20 ka, in agreement
with genomic and archeological evidence pointing to a pop-
ulation bottleneck ca. 20,000 years ago experienced by the
Native American ancestors when crossing the Bering Strait
into the Americas (Goebel et al. 2008; Moreno-Estrada et al.
2014; Raghavan et al. 2015).

In addition, our model inferred low Ne for present-day
NMs ranging between �2,200 and �2,800. The NM with
the largest Ne was the MYA (95% CI: 2,310–3,256) followed
by TAR (95% CI: 2,117–2,729), TRQ (95% CI: 2,050–2,759),
and HUI (95% CI: 1,865–2,493) (supplementary table S6,
Supplementary Material online). Using runs of homozygosity,
Moreno-Estrada et al. (2014) inferred slightly higher variation
in Ne among different Indigenous groups, but with overlap-
ping confidence intervals. On the other hand, using whole-
genome data, Raghavan et al. (2015) inferred a HUI Ne to a
similar 2,500. Of notice, the census size of these populations is
also the largest for the MYA and TAR (INEGI 2015). These
observations are noteworthy since low Ne combined with
founder effects can exacerbate the disproportionate accumu-
lation of deleterious and clinically relevant variants in the
population (Belbin et al. 2018).

One caveat of our demographic inference is that we did
not include the NAH in the model. Initial tests including this
population resulted in extremely high Ne and ambiguous
location in the tree. Furthermore, ADMIXTURE analyses
showed that NAH are constituted by components from mul-
tiple populations within each individual (supplementary fig.
S4a, Supplementary Material online), an observation made
also in a recent study by Romero-Hidalgo et al. (2017). This
likely reflects NAH being genetically heterogeneous as a con-
sequence of their past history involving continuous coloniza-
tion and extended domination of multiple distinct groups by
the NAH-speaking Aztec empire right before European colo-
nization (Brumfiel 1983; Romero-Hidalgo et al. 2017).

Overall, our inferences describe, to our knowledge, the
most detailed demographic history model based on genetic
data for NM to date. We caution, however, that as with any
inferred demographic model, the assumptions have certain
caveats that could lead to errors. Specifically, our model
assumes constant population sizes since the most recent split.
Certainly, the availability of genome-wide data from present
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day, as well as from ancient populations from throughout
Mexico spanning these time frames, will contribute to draw
a more refined picture of past population history and genetic
structure.

Targets of Adaptive Evolution in NM
We implemented an ancestry-specific approach of the widely
used FST-based PBS to identify genes with strong differenti-
ation in all NM since their divergence from CHB, as well as
genes differentiated in each NM population branch. The first
approach revealed selection signals previously found in Native
Americans and other populations, as well as genes not pre-
viously identified to be under selection.

We identified a strong differentiation on FAP (Fibroblast
Activator Protein Alpha). The locus harboring this gene, to-
gether with IFIH1 (interferon induced with helicase C domain
1) is suggested to be under adaptive archaic introgression in
Peruvians from the TGP (PEL), a population with a high pro-
portion of Native American genetic ancestry (Racimo et al.
2016) and Melanesians (Vernot et al. 2016). This locus has
been associated with type 1 diabetes (Liu et al. 2008) and
susceptibility to diverse viral infections (Fumagalli et al. 2010).
The fact that this locus also has an adaptive signal in NM is
consistent with a previous study that suggested that the loci
harboring IFIH1 suffered recent positive selection in South
Americans (Fumagalli et al. 2010). We confirmed that this
haplotype is present in NM by comparing the Neandertal
haplotype (Marnetto and Huerta-S�anchez 2017) with
whole-genome sequence data available for other Native
Americans from an independent study (Romero-Hidalgo
et al. 2017). The archaic haplotype was found in 7 out of 24
chromosomes in TAR and MYA individuals as well as in some
Mexican individuals from LA (MXL) and other NM
(Tepehuano, Totonaco, and Zapotec) (supplementary fig.
S11, Supplementary Material online).

SLC24A5 (solute Carrier family 24 Member 5) has also been
previously identified as target of selection. This gene is in-
volved in melanogenesis (Lamason et al. 2005) and has
been vastly studied in European populations, where it displays
one of the strongest signals of selection in humans (Mallick
et al. 2013). Specifically, the derived allele of SNP rs1426654
within this gene leads to a decrease in skin pigmentation.
However, the ancestral allele, which might be advantageous
in latitudes with higher exposure UV radiation, is nearly fixed
in NM populations, driving the extreme PBS signal and sug-
gesting either a relaxation of selection or an adaptive event
favoring the ancestral state (the derived allele is fixed in CEU,
and found at 0.03 and 0.007 frequencies in CHB and NM,
respectively).

In addition, we found three genes with extreme PBS values
involved in immunity and defense against pathogens (SYT5,
IL13, and IL17A). Selection on these genes could be explained
by the strong selective pressure posed by pathogens brought
by Europeans on the Native population during colonization;
it is estimated that up to 90% of the Native population died as
a consequence of infections during this period (Rodolfo
Acuna-Soto et al. 2002).

Regarding population-specific signals of adaptive evolu-
tion, we identified few genes with significant (P< 10�5) in
HUI only. These genes were involved in repression of herpes-
virus transcription (ZNF426), and cellular proliferation and
differentiation (KNC2), When we expanded our search to
consider genes above the significance threshold, but with
consistent extreme PBS and low P values in two or more
population comparisons, we identified some interesting
instances in TRQ, HIU, and TAR, which we speculate could
be related to some characteristic traits in these populations.

Previous anthropometric studies have revealed that the
TRQ (together with other Indigenous groups in Oaxaca and
neighboring states of Veracruz and Chiapas) exhibit the low-
est average stature values in Mexico (females mean ¼
142.5 cm, males mean¼ 155.1) (Faulhaber 2014). This obser-
vation becomes relevant as one of the genes (KBTBD8) iden-
tified here as likely being under adaptive evolution in this
population, lies within a locus previously associated to idio-
pathic short stature in Koreans (Kim et al. 2010).

Regarding HUI, we found a gene (HSD17B11) involved in
the metabolism of steroids and retinoids, reported to have
high expression in tissues related to steroidogenesis (adrenal
gland and testis) and detoxification (liver, lung, kidney, and
small intestine) (Lundov�a et al. 2016). Interestingly, the cere-
monial intake of peyote cactus (Lophophora williamsii) is a
cultural tradition that traces back to centuries in the Mexican
region settled by the HUI population. The psychoactive com-
pound in peyote, the alkaloid mescaline, is metabolized by the
liver enzymes and can cause severe toxicity when consumed
in high amounts. Furthermore, the GO and pathway enrich-
ment analyses in this population returned genes APOA1,
APOA2, APOA4, APOA5, and ABCG5 (supplementary table
S14, Supplementary Material online) involved in regulation
of intestinal cholesterol absorption. Of notice, genes APOA1,
APOA4, and APOA5 form a cluster on chromosome 11, so it is
possible that the SNPs driving the signal are in LD, resulting in
correlated PBS values. However, genes APOA2 and ABCG5 are
in independent chromosomes (chromosome 1 and 2, respec-
tively), suggesting that the enriched pathway might in fact be
under adaptive evolution. Variants in some of these genes
have been associated to high levels of LDL and total choles-
terol (Aulchenko et al. 2009; Bandarian et al. 2013) as well as
high triglyceride levels (Pennacchio et al. 2002; Ouatou et al.
2014; Zhu et al. 2014), both factors leading to cardiovascular
disease. The derived allele of rs3135506 in APOA-5 has the
highest frequency in HUI compared to the other populations
from the study and the TGP (supplementary table S14,
Supplementary Material online). This missense mutation
(S19W) has been associated with increased triglyceride levels
and elevated risk of developing coronary artery disease in
several populations including one labeled as “Hispanic”
(Pennacchio et al. 2002; Ouatou et al. 2014; Zhu et al.
2014). Moreover, HUI has the highest frequency of the mis-
sense mutation rs6756629 in ABCG5, which has been associ-
ated to increased total cholesterol and LDL a risk factor for
coronary heart disease (Aulchenko et al. 2009). Together,
these observations point some possible adaptation to a low
cholesterol-lipid diet (such as a reduced meat consumption)
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or a manner to regulate the intake of lipids from animal
source foods.

Lastly, among the most remarkable results, we found a
candidate gene under selection in TAR (BCL2L13) with anno-
tations related to joint and bone physiology, namely OA,
which could be related to the outstanding physical endurance
in the Rar�amuri. Interestingly, a recent study (Romero-
Hidalgo et al. 2017) detected an enrichment of genes harbor-
ing novel promoter and missense variants with pathway and
GO annotations related to musculoskeletal function in the
same population. In agreement with this, we recapitulated
similar observations when looking for GO enrichment in
novel nonsynonymous variants in our 19 TAR exomes (sup-
plementary table S15, Supplementary Material online). These
two approaches represent independent evidence from both
highly diverged and novel functional variation that converge
in musculoskeletal traits as the potential underlying mecha-
nism for Raramuri’s endurance. Taken together, these obser-
vations could imply that this cultural trait has imposed a
selective pressure on this population. However, additional
in-depth studies in the TAR incorporating genomic and de-
tailed phenotype data are needed to disentangle the genetic
architecture and the molecular pathways behind this com-
plex trait.

In conclusion, we generated a rich catalog of Native
American genetic variation from Mexican populations, the
analysis of which has yielded novel estimates for ancestral
population splits as well as candidate genes likely under adap-
tive evolution in both the general NM population and in
specific NM groups. Our demographic inference is consistent
with previous archeological and genetic knowledge on the
peopling of the Americas, while adding temporal resolution
to the population dynamics occurring thousands of years ago
in the Mexican mainland. This demographic model also
allowed us to compare the estimated PBS values of genes
against a simulated null distribution under such model, and
to identify the instances with significant extreme values.
Genes with extreme values in specific populations have anno-
tations that hint a likely role in characteristic phenotype or
cultural practices in the NM included in this study. However,
it remains to be tested, if these high values indeed derive from
adaptive events and if these adaptations are in fact involved
with the observed traits in these NM populations.

Materials and Methods

Samples
Most of the samples sequenced in this study were previously
collected and sampling procedures are described in Moreno-
Estrada et al. (2014). Specifically, a subset of samples from four
of the studied populations were selected for having the high-
est proportions of Native American ancestry according to
Affymetrix 6.0 SNP array data generated therein. After filtering
for DNA quality control, a total of 19 Tarahumara
(Chihuahua), 13 HUI (Jalisco), 15 TRQ (Oaxaca), and 12
MYA (Quintana Roo) individuals were included in this study.
Additionally, 18 NAH samples from three sampling locations
in Central Mexico previously genotyped with Affymetrix

Axiom World Array IV (Galanter et al. 2014) were selected
for exome sequencing based on their proportions of Native
American ancestry and passing DNA quality control. In both
sampling schemes, Institution Review Board (IRB) approval
was obtained from Stanford University, and individuals were
consented according to the approved protocol. All individuals
gave written consent. DNA was extracted from blood and
ethnographic information including family, ancestry, and
place of birth were collected for all individuals. In agreement
with the informed consents obtained from participants of the
Indigenous communities and to respect their privacy for the
transfer of genetic data, individual-level exome vcf files for the
samples sequenced in this study are available through a data
access agreement by contacting A.M.-E. and M.C.A.-A.

Exome Sequencing
Exome regions were captured using the Agilent SureSelect
44Mb human all-exon array v2.0 for the 76 individuals.
Genotype data from previous studies (Galanter et al. 2014;
Moreno-Estrada et al. 2014) were available for these individ-
uals (Affymetrix 6.0 SNP array data for HUI, MYA,
Tarahumara, and TRQ, and Axiom World Array IV data for
the NAH).

Each individual was sequenced in a 5-plex library on an
Illumina HiSeq 2000 producing 101-bp paired end reads.
Reads were processed according to a standard pipeline in-
formed by the best practices described by the TGP (The 1000
Genomes Project Consortium 2015). Briefly, reads were
mapped to the human reference genome (hg19) using bwa
(version 0.6.2). Duplicate read pairs were identified using
Picard (http://broadinstitute.github.io/picard/; last accessed
December 8, 2019). Base qualities were empirically recali-
brated and indel realignment was performed jointly across
all samples using the GATK (version 1.6) (McKenna et al.
2010). Variants were filtered to the exome capture region.
We corroborated the concordance of the variants with the
previously generated array genotype data and identified two
samples with low concordance (HUI75 and TRQ41) that, due
to mislabeling, were actually replicates of other individuals.
We therefore excluded these two samples from further down-
stream analyses. Furthermore, we carried out a Pearson cor-
relation test in the software R (cor.test) (R Core Team 2014),
to investigate if the difference in depths could be affecting our
ability to retrieve heterozygous sites. We found no such
correlation.

Masking of Non-Native Genomic Segments
To corroborate the Native American ancestry of the individ-
uals, we combined the genotype data available for these indi-
viduals (Galanter et al. 2014; Moreno-Estrada et al. 2014) with
genotype data from European (CEU) and African (YRI) indi-
viduals generated as part of the 1000 Genomes consortium
(TGP) (The 1000 Genomes Project Consortium 2015) and
performed PCA using the tool smartpca from the
EIGENSOFT package (Patterson et al. 2006; Price et al.
2006). Additionally, to identify the extent of non-Native ge-
netic ancestry in each individual, we used the maximum-like-
lihood–based clustering algorithm ADMIXTURE to infer

Population History and Gene Divergence in Native Mexicans . doi:10.1093/molbev/msz282 MBE

1001

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz282#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz282#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz282#supplementary-data
http://broadinstitute.github.io/picard/


three (K¼ 3) ancestral components in each individual
(Alexander et al. 2009). For PCA and ADMIXTURE analyses,
the genotype data were pruned with plink (Purcell et al. 2007)
using the commands –geno 0.1 and –indep 50 5 2.

To avoid the inclusion of markers with European and
African genetic ancestry in downstream analyses, we carried
out a masking approach of the non-Native genomic segments
in admixed individuals. We did this by calling local ancestry
tracts in the available genotype data for the individuals in the
study and used these calls to mask their respective exome
data. To this end, first we merged the genotyping array data
available for the admixed HUI, MYA, TAR, and TRQ (Moreno-
Estrada et al. 2014) with a reference panel consisting of 30
individuals with 100% Indigenous ancestry, from the same
study, as well as with 30 CEU and 30 YRI genotyped on the
same array (Affymetrix 6.0) as part of the TGP (supplemen-
tary table S2, Supplementary Material online). For admixed
NAH, we combined their genotype data from Galanter et al.
(2014) with a reference panel consisting of genotype data of
20 individuals with 100% Indigenous ancestry genotyped with
the same array (Affymetrix Axiom World Array IV, also
known as LAT array for its informativeness in Latino popula-
tions), as well as with 20 HapMap CEU and 20 HapMap YRI
genotyped in Affymetrix Axiom arrays (supplementary table
S3, Supplementary Material online). The number of individ-
uals in each reference population was down sampled to the
data available for individuals with 100% Indigenous ancestry
for each array (i.e., there were 30 individuals with 100%
Indigenous ancestry in the Affymetrix 6.0 array, and 20 in
the Axiom LAT) to avoid a potential bias of having more
individuals in a reference population than other (Maples
et al. 2013).

Genotype data for each set was then phased using
SHAPEIT (version 2) (O’Connell et al. 2014) with default
parameters. Local ancestry was estimated for the resulting
haplotypes using the ‘‘PopPhased’’ routine of RFMix version
1.0.2 (Maples et al. 2013) with parameters –correct-phase (for
phase correction) and –G15 (to assume 15 generations since
admixture) and no EM iterations. Local ancestry calls in the
Viterbi files were then used to mask (make missing) the sites
in the exome vcf files that were not part of homozygous
Native American-ancestry blocks. We note that, even though
it is recommended to use EM iterations in RFMix (Maples
et al. 2013), we were confident that the masking of the called
European and African segments yielded reliable Native
American segments. We corroborated this by a posteriori
calling local ancestry with RFMix using two EM iterations
on the Affymetrix 6.0 data set and comparing the amount
of Native American ancestry detected. We observed that us-
ing two EM iterations called more non-Native American seg-
ments than when using zero (supplementary table S2,
Supplementary Material online). We further inspected the
few regions with inconsistent calls between the two runs
(with and without EM iterations). For most cases, the
European or African segments identified in the run with
zero EM iterations were called as Native American in the
run with two, suggesting that we would be mainly missing
Native American variants and not including European and

African ones in the analysis, which would still leave our results
free of a bias introduced by including missed European and
African segments. Furthermore, we manually inspected the
regions in the exome data where the inconsistency was re-
versed, i.e., regions called as Native with the zero EM iterations
and as European or African with two iterations and found
that such did not affect the genes identified as likely being
under adaptive evolution. Therefore, we conclude that this
lack of EM iterations in RFMix is not affecting the inferences
made on the masked data set.

Variant Analysis and Annotation
The vcf file was annotated using the tool ANNOVAR (version
2015Jun17) (Wang et al. 2010) with the following reference
data sets: refGene, esp6500siv2_all, 1000g2015aug_all, exac03,
avsnp142, and ljb26_all.

The script table_annovar.pl was used with the fol-
lowing parameters:

table_annovar.pl–vcfinput$pop.vcf

annovar_humandb/–buildverhg19–out

$pop -–remove -–protocol refGene,

esp6500siv2_all, 1000g2015aug_all,

exac03, snp142, clinvar_20160302,

dbscsnv11, dbnsfp30a –-operation g,

f, f, f, f, f, f, f -–nastring.

New variants were defined as those not present in ExAC
(Lek et al. 2016) NHLBI Exome Sequencing Project (ESP)
(https://esp.gs.washington.edu; last accessed December 8,
2019), TGP (The 1000 Genomes Project Consortium 2015),
and NCBI’s dbSNP142 data sets. These were discovered in the
entire data set of 76 exomes and also per population. The
annotation of these new variants was retrieved and classified
according to their potential effect on transcripts using
RStudio (RStudio Team 2015).

Treemix
We used the program Treemix version 1.12 (Pickrell and
Pritchard 2012) to infer a tree topology for the relationships
among the Indigenous populations in this study. First, we
masked the Affymetrix 6.0 genotype data for HUI, MYA,
TAR, and TRQ to retain only segments with homozygous
Native American ancestry, and merged these with data
from CHB individuals genotyped on the same array as part
of the TGP (The 1000 Genomes Project Consortium 2015).
We used plink to set a missingness filter of 1% (–geno .01),
and to calculate allele frequencies (–freq). We used the script
plink2treemix.py (provided with treemix) to generate the in-
put file. We then ran 100 bootstrap replicates of treemix
setting the root to CHB, selecting the -global and -bootstrap
options, requesting 1000 blocks, and defining a randomly
generated seed. We then obtained a consensus of the 100
trees using the Geneious Prime 2 2019.2.1 (https://www.gene-
ious.com; last accessed December 8, 2019), and averaged the
values for the covariance, covariance errors, and covariance
according to the model matrices to plot the residuals of each
inferred topology. To infer migrations, we ran treemix with
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one and two migrations and used the consensus from the 100
bootstrap replicates as the previously generated tree (-g op-
tion) (supplementary fig. S7, Supplementary Material online).

Demographic Inference
For demographic inference we used the exome sequencing
data from the four NM populations HUI, MYA, TAR, and
TRQ, as well as data from Han Chinese (CHB) from TGP.
Non-native ancestry was masked in each NM sample as de-
scribed above. To include only putatively “neutral sites” in the
analysis, we limited these to 4-fold (synonymous) and intronic
sites determined via SNPEff (Cingolani et al. 2012). While
background selection has been reported to have an effect
in CDS regions (Naidoo et al. 2018) we don’t expect a biased
impact in our demographic inferences given the joint analysis
with CHB. Inference was made on the unfolded SFS. We used
the panTro4 reference sequence as an outgroup and imple-
mented a context-dependent correction for ancestral misi-
dentification (Hernandez et al. 2007). We estimate the
chimpanzee reference genome to have a 0.012 divergence
from the human reference (hg19) in our target regions.
After removing triallelic sites and sites with a missing out-
group allele, the callable sequence length was 8,889,201 bp
and the number of sites used was 20,991.

Dadi
The demographic model was inferred via an approximation
to the forward diffusion equation implemented in dadi
(Gutenkunst et al. 2009). This approach infers the best-
fitting parameters given a specific demographic model and
calculates the log-likelihood of the model fit based on a com-
parison of the expected to observed SFS. dadi can handle a
maximum of three populations and has difficulty optimizing
with more than two populations. Due to this, we optimized
over the composite likelihood of six pairwise two-population
allele frequency distributions extending the approach from
Gravel et al. (2011).We used grids of 40, 50, and 60 grid points
per population, and we projected population allele frequen-
cies to the following number of haplotypes: TAR 26; MYA 14;
TRQ 16; HUI, 16.

We fixed a population bottleneck in the ancestral popu-
lation at around 70 KYA (dadi parameter: t¼ 0.09), and in-
ferred all other parameters. The timing of the bottleneck was
fixed as it has been estimated in previous studies (Li and
Durbin 2011) and because dadi often has difficulties inferring
the time and size of a bottleneck. As the expected SFS of
multiple bottlenecks looks nearly identical to the SFS of one
bottleneck (with a different magnitude), we expect this bot-
tleneck to encompass the loss of diversity in the out-of-Africa
expansion and the crossing of the Bering strait (similar to
Raghavan et al. 2015). We utilized the topology inferred via
Treemix (supplementary fig. S7, Supplementary Material on-
line, Pickrell and Pritchard 2012), and confirmed this as the
best-fitting topology in dadi (supplementary table S6,
Supplementary Material online). To convert best-fit parame-
ters to interpretable values, we assumed a generation time of

29 years (Fenner 2005) and a mutation rate of 1.25e-8 muta-
tions per base pair per generation.

Confidence intervals were determined via 1,000 boot-
strapped replicates. For each replicate, we divided the ge-
nome into 500 kb blocks and removed the blocks that
contained no target regions. Then we randomly sampled
blocks with replacement and inferred dadi parameters.

D-Statistics
We computed genotype-based D-statistics using
ADMIXTOOLS (Patterson et al. 2012) to test hypothesis of
tree-like relationships between populations. We evaluated
relationships to the “Ancestral A” (AncA) and “Ancestral B”
(AncB) branches as defined in Scheib et al. (2018). We used
genomic data from individual Anzick1 from Montana
(�12.8k years old) (Rasmussen et al. 2014) to represent the
AncA branch, and genomic data from two present-day
Athabascans (Raghavan et al. 2014) to represent the AncB
branch. In addition, we included 108 Yoruba individuals (YRI)
from the TGP to be used as the outgroup population. We
merged these data with the variant data from the exomes of
NM and CHB and only considered sites with a minor allele
frequency (maf) of 0.10 in YRI. After merging and applying the
maf filter, we estimated D-statistics in the forms D (NM1,
NM2; AncA, YRI), D (NM1, NM2; AncB, YRI), D (NM1, NM2;
CHB, YRI), and D (AncB, AncA; NM, YRI).

Population Branch Statistic
Variants were annotated as ancestral/derived using the
orthologous regions in a great ape and rhesus macaque phy-
logeny as reported by Ensembl Compara and used by the TGP
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_
results/supporting/ancestral_alignments/). To estimate PBS
for genes in all NM, we used the exome data available as
vcf files in the TGP for CHB (used as the second population)
and CEU (used as the third population). We used VCFtools
(Danecek et al. 2011) to calculate allele frequencies of the
derived alleles for each population and then computed pair-
wise FST values for each gene using Reynold’s FST formula
(Reynolds et al. 1983). Only sites with depth above 10� and
at least 10 chromosomes per population were included in the
calculation. Also, only sites that were polymorphic in at least
one of the three populations were considered.

PBS values for each gene in NM since divergence from the
CHB were computed using the formula:

PBSNM ¼
TNM�CHB þ TNM�CEU–TCHB�CEU

2

where

T ¼ � log ð1 – FSTÞ

We used R (R Core Team 2014) to select genes at the top
1% of the overall PBS distribution and to confirm these were
also at the top of their gene size (SNPs/gene) bin (fig. 2b).

To compute PBS values for genes in a specific NM popu-
lation (NM1) since their divergence from a second NM
(NM2) population, we implemented the same filters as above
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(only sites with depth �10� and at least ten chromosomes
per population) and used CHB as the third population and
the formula:

PBSNM1 ¼
TNM1�NM2 þ TNM1�CHB–TNM2�CHB

2

Since we considered four NM (HUI, MYA, TAR, and TRQ),
there was a total of 12 possible NM1-NM2 comparisons. To
evaluate the significance of the PBS values in specific NM
populations, we compared them to a null distribution of
simulated neutral sequences and followed the method of Yi
et al. (2010). These simulated sequences were generated in ms
(Hudson 2002) with our inferred 4-population NM demog-
raphy and used CHB as an outgroup. We estimated the CHB-
NM split time by averaging the inferred split time and bot-
tleneck Ne between the CHB and each NM population.

Allele frequencies were calculated from sequences com-
prising 700k simulated genes with 1–80 SNPs per gene. PBS
values on the simulated data were then calculated using the
same filters and formula as for the observed data. Because of
filters (at least ten chromosomes per population and only
polymorphic sites), some of the simulated sites were disre-
garded causing a change in the number of available simula-
tions for each SNPs/gene bin. Because of this we randomly
subsampled 500k simulations for each SNPs/gene bin cate-
gory, which covered all bins between 1 and 71 SNPs/gene.

Observed PBS values were then compared to the simu-
lated values in their corresponding SNPs/gene bin category. A
P-value was calculated by observing the fraction of simulated
PBS values larger than the observed PBS. For example, if there
was only one simulated PBS value larger than the observed
one, the P-value corresponded to a P-value of 0.000002 (1/
500,000). For genes with 1–71 SNPs/gene, observed values
were compared to their respective simulated bins.
Observed PBS values for genes with >71 SNPs were com-
pared to the simulated PBS distribution of 71 SNPs/gene.

Functional Enrichment Analysis
To perform the enrichment analysis, we first defined an inter-
secting subset of genes for each population considering only
the genes in all pairwise comparison showing extreme PBS
values (P-value < 0.05) (e.g., the intersection of the subsets
TAR-HUI, TAR-MYA, and TAR-TRQ generates list of inter-
secting genes for the Tarahumara).

For GO enrichment, we used the online tool in http://
www.geneontology.org/page/go-enrichment-analysis; last
accessed December 8, 2019. We analyzed each of the four
gene lists with the three GO categories (biological processes,
cellular components, and molecular function) using FRD cor-
rection (ran on August 25, 2019).

To test for enrichment in GO categories among genes with
novel missense SNV, we used WebGestalt online tool (Wang
et al. 2013) as reported in Romero-Hidalgo et al. (2017).

We ran a pathway over-representation analysis on the
same gene sets using the IMPaLA online tool (Kamburov
et al. 2011) available at: http://impala.molgen.mpg.de (ran
on August 25, 2019) and considered only pathways with a

Q-value less than 0.05. Most results had a Q-value of 1, rep-
resenting an enriched category with a 100% of probability of
being a false positive, even when they exhibited low P-value
scores. We selected the threshold of a 0.05 score as it implies
5% of the results with that corresponding P values are false
positives.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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